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Self-bending of the coupled spatial soliton pairs in a photorefractive medium
with drift and diffusion nonlinearity
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The propagation of two incoherently coupled laser beams~coupled soliton pairs! in the photorefractive
crystal with drift and diffusion components of nonlinear response is investigated. By the effective particles
method we have shown that not only the well-known Manakov’s soliton pairs but also asymmetric pairs can
propagate undistorted in photorefractive crystal with diffusion nonlinearity along the parabolic trajectory for
the definite relations of propagation constants. We numerically found the exact profiles of the specific multi-
hump soliton solutions that are possible only in the photorefractive medium with nonlocal diffusion response.
The stability properties and specific features of pair collisions are analyzed.
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I. INTRODUCTION

Spatial solitons in photorefractive crystals~PRC! have
been of growing interest during the past several years.
least three generic types of the planar~(111)-dimensional!
photorefractive solitons have been predicted and observe
the date. First, the quasi-steady-state solitons exist in P
when an external applied field is slowly being screened@1,2#.
The second type is the so-called screening solitons that o
in a steady state when the external field is nonuniform
screened@3–8#. The third type is the photovoltaic soliton
@9#. Photorefractive spatial solitons can occur at microw
power levels. Therefore PRC’s are extremely suitable m
rials for nonlinear switching optical devices constructio
The concept of such devices is based on the fact that
soliton is a fundamental mode of the optical wavegu
which it creates in a photorefractive medium. Structu
formed by intersecting waveguides~i.e., by colliding coher-
ent @10–13# and incoherent@14,15# solitons! are especially
attractive from the practical point of view.

Another intriguing issue—the cross-modulation coupli
of incoherent solitonlike (111) dimensional beams in pho
torefractive media exhibiting purely drift~quasilocal! nonlin-
earity of the Kerr type—also was subjected to the care
consideration~see@4# and references cited herein!. The Kerr-
type regime of nonlinearity can be realized in photorefract
crystal under the influence of the high static external elec
field for a relatively wide~20–50mm! laser beams if photo
induced conductivity is considerably less than the dark c
ductivity ~i.e., when the intensity of the laser beamI is small
compared with the dark irradiance levelI dark!. In this case
the saturable response of the photorefractive medium ca
described by the first term of the expansion on small par
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eterI /I dark, i.e., by Kerr-type law. It should be noted that th
effective level of the dark conductivity could be considerab
increased due to the introduction of the external backgro
illumination. Mathematical justification of the applicabilit
of the Kerr-type model for the photorefractive medium c
be found in @5# ~see for example Eq.~24!! and @16# ~Eq.
~17!!. The further decrease of the transverse beam ex
causes the increase of the influence of the nonlocal diffus
component of PRC response leading to the self-bending
fect @17–21#. The influence of this nonlocal component o
the single laser beams shaping and interaction was exam
in great detail for the case of the self-bending of the o
component photorefractive solitons@22#, as well as for the
case of temporal solitons in the medium with Raman co
ponent of the nonlinear response@23#. The behavior of the
two incoherently coupled beams in PRC with nonlocal
sponse calls however for the separate consideration. In
present paper we concentrate on the self-bending of t
component optical solitons produced by the incoherent cro
modulation coupling of (111) dimensional laser beam
with the specific shapes. The interest to this problem is m
tivated not only by the reason of theoretical generalization
the previous results but also by possible applications in
vices of light-by-light control and for pure optical waveguid
ing. Multicomponent solitons offer new possibilities in th
flexible changing relation between the maximal incremen
the refractive index and the nonlinear waveguide width@4#.

Below the results of theoretical analysis and compu
simulation of the influence of nonlocal component of nonl
ear response on the coupled soliton pair propagation
interaction are presented. Using the effective particle met
we look for the trajectories of the coupling beams having
input profiles given by the well-known solutions for the ca
of Kerr-type nonlinearity. Further the exact profiles for th
self-bending two-component spatial solitons are presen
Stability of these solutions and specific features of their c
lisions are also examined by computer simulation.
©2000 The American Physical Society03-1
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II. THEORETICAL MODEL

To describe the propagation of the coupled soliton pai
the photorefractive medium with drift and diffusion nonlin
earity we apply the well established technique which uses
standard shortened wave equation completed with a se
charge-transport equations describing the photorefractive
fect in a nonlinear medium@3–8#. Further we consider the
case when two laser beams sharing the same polarization
having practically the same wavelengths launched onto
input face of the photorefractive crystal with rather lar
characteristic response timet rel so, that the wave number
differenceDk greatly exceeds 1/ct rel . Thus, no stationary
interference pattern can form within a time scale compara
with the response time of the crystal and nonlinear refrac
index perturbation is defined only by the modal sum of
tensities of the laser beams. Under this assumption the
solution of the shortened wave equation and charge-trans
equations for the photorefractive crystals with rather la
dark conductivity and a weak diffusion current results in t
following system of the coupled wave equations for the n
malized complex field amplitudesq1,2(h,j):

i
]q1,2

]j
52

1

2

]2q1,2

]h2 2q1,2~ uq1u21uq2u2!

1mq1,2

]

]h
~ uq1u21uq2u2!. ~1!

Hereh5x/x0 is the normalized transverse coordinate;x0 is
an arbitrary spatial scale;j5z/Ld is the normalized propa
gation distance;Ld5kx0

2 is the diffraction length, corre-
sponding tox0 ; k5n0v/c is the wave number;n0 is the
unperturbed refraction index;v is the central radiation fre
quency; q1,2(h,j)5A1,2(h,j)(Rdr /I d)1/2; A1,2(h,j) is the
amplitude of the light field; Rdr5Ld /Lr ; Lr
52/(krefn0

2E0) is the nonlinear refraction length;r ef is the
effective electro-optic coefficient;E0 is the static electric
field applied to PRC in the transversex-direction; I d de-
scribes the dark conductivity of the PRC; parameterm de-
scribes the magnitude of the nonlocal diffusion compon
of PRC response. The sign ofm depends on the direction o
the externally applied electric fieldE0 . The last term in the
right side of Eq.~1! describes the self-bending effects resu
ing due to the energy transfer from the low- to the hig
frequency spatial components. The first term in the right p
of Eq. ~1! describes the diffraction spreading of the beam
the second one describes its self-focusing due to the
component of nonlinear response which is quasilocal in
one-dimensional case.
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Equation~1! is analogous to that describing the Ram
self-frequency shift in the time domain@24,25#. In the latter
case coordinateh corresponds to the normalized runnin
time (t-z/c)/t0 ; j corresponds to the longitudinal coordina
z/Ld normalized by the dispersion lengthLd5t0

2/uk9u; pa-
rameterm is proportional to the ratiotR /t0 , wheretR is the
Raman response characteristic time. Thus the model con
ered here could be also referred to the case of temporal
tons in Kerr medium in the presence of Raman amplificat
@23#.

We search for the solution of the system~1! in the stan-
dard way introducing the real envelopesr1,2 so that
q1,2(h,j)5r1,2(h)exp(ib1,2j). After the substitution one
can obtain the following system of the coupled nonline
differential equations of the second order:

d2r1,2

dh2 52r1,2S b1,22~r1
21r2

2!1m
d

dh
~r1

21r2
2! D .

~2!

The latter system can be integrated for example with the
of methods of the inverse scattering transform~IST! only for
the case of the purely drift nonlinearity, i.e., when parame
m50. There are two well-known types of bright-soliton s
lutions ~besides the trivial case when one of the compone
is zero! of the system~2! with zerom had been presented t
the date. The first one~the one-soliton solution of the Mana
kov model! is possible for the equal values of the propag
tion constantsb15b25b and can be written in the following
way @26#:

r15~2b!1/2cosw sech@~2b!1/2h#,
~3!

r25~2b!1/2sinw sech@~2b!1/2h#,

wherew is arbitrary projection angle. The constituents of t
solution ~3! are purely symmetric and have the same fun
tional dependence onh. In our case of coupled soliton pair
these two components can be considered as thew projections
of the fundamental bright-soliton envelope. Such sta
pairs, which have been first realized as a stable pair of la
pulses with orthogonal polarization in nonlinear waveguid
@27#, have been observed recently in PRC@28#. The second
type of bright-soliton solution~the two-soliton solution of
the Manakov model! is possible for the different values o
propagation constants and for example for the case ofb1
.b2 have the following form@29,30#:
r15
@2~b12b2!#1/2cosh@d2~h2hs!#

cosh@d1h#cosh@d2~h2hs!#2~b2 /b1!1/2sinh@d1h#sinh@d2~h2hs!#
,

r25
@2~b12b2!#1/2sinh@d1h#

~b1 /b2!1/2cosh@d1h#cosh@d2~h2hs!#2sinh@d1h#sinh@d2~h2hs!#
. ~4!
3-2
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SELF-BENDING OF THE COUPLED SPATIAL SOLITON . . . PHYSICAL REVIEW E63 016603
Here parameterhs describes the shift between centers
constituents of the pair and we introduced the notationsd1
5(2b1)1/2 andd25(2b2)1/2. In terms of popular approach
can be shown that the first component of~4! is a zero-order
linear mode of the self-induced waveguide and the sec
component is the first-order linear mode. One can see th
contradistinction with~3! there exist three parameters d
scribing the soliton profile. In general the solution of theN
coupled nonlinear Shro¨dinger equations is defined by 2N-1
free parameters:N propagation constants describing the a
plitudes of the solitons andN-1 beam center coordinate
describing the beam center positions, i.e., coupling betw
constituents. Thus with increase of parameterhs the asym-
metry of the solution~4! increases finally resulting in decou
pling of the pair into the two independent solitons whenhs
→`. Both solutions~3! and~4! can be obtained in terms o
IST and are known to be structurally stable with respec
the small and collision-type perturbations@30,31#. Neverthe-
less, one should take into account that in any real experim
the needed 1D diffraction and self-interaction can be reali
only by using slit beams with uniform field distribution i
direction orthogonal toj andh. In doing so, one must tak
into account a possibility of beam filamentation, which c
develop on PRC length due to modulation instability@32,33#.

The inclusion of the diffusion term in the right side of E
~2! ~the case of nonzerom! drastically changes the pictur
even for the very small value ofm. No more nondistorting in
propagation process localized soliton solutions are poss
For the case of equal propagation constants the specific
diffracting solution can be expressed in terms of two coup
bright shock waves which can be thought as aw projections
of the fundamental shock wave@16# analogously to the one
component Manakov solitons. For the nonequal propaga
constants the solution has an even more complicated form
the coupled bright and dark shock waves. But further we
interested only in the localized self-bend soliton pairs t
can be found with the aid of two methods presented be
~effective particles method and transformation into the pa
bolic coordinate system! completed one another.

III. THE EFFECTIVE PARTICLES METHOD

In this section we consider the trajectories of the pair
beams having the input profiles presented by~3! and~4! and
launched into the PRC with a nonlocal component of non
ear response. The propagation trajectory can be easily fo
with the aid of the method of the effective particles which
frequently used in quantum mechanics and enables on
obtain the trajectories of particle motion in different pote
tials if the evolution of the localized particle wave function
governed by the equation of the type~1! ~perturbed nonlinear
Shrödinger equation!. With this method one can obtain tha
the localized ~that means bothq1,2(h→6`,j)50 and
]q1,2(h→6`,j)/]h50) pairing beams trajectories in th
PRC with nonlocal component in nonlinear response is gi
by

w1,2

d2h1,2

dj2 5mE
2`

` d

dh
r1,2

2 d

dh
~r1

21r2
2!dh. ~5!
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Here we introduced the beam powersw1,25*2`
` r1,2

2dh and
beam center coordinates

h1,25E
2`

`

r1,2
2hdhY E

2`

`

r1,2
2dh. ~6!

As discussed earlier,r1,2 is the real beam shapes~for ex-
ample unperturbed profiles given by~3! and ~4!!. One can
see from Eq.~5! that the constituents of the pair move alon
the parabolic trajectories

h1,25a1,2j
2/2, ~7!

which is defined by both the intensity of each constituent a
common intensity profile. If the pair constituents start th
propagation along the different trajectories then the pair
couples and expression~5! is valid only at the initial stage of
propagation, due to the strong perturbation of the beam p
files through the decoupling. But the opposite case of sta
propagation enables one to readily obtain the approximat~it
is expected that for the typical experimental values ofm
;0.1 the relative shape transformation in the propagat
process is of the order ofm! analytical profiles of the pair
constituents.

First we considered the one-soliton solution~3! and ob-
tained that as for the case of the single beam@22–25# the
Manakov pair shows the stable propagation along the p
bolic trajectory witha1,25(32/15)mb2 despite the amplitude
difference of the pair constituents. This is due to the fact t
the given constituent ‘‘feels’’ the common intensity profi
~which is the same for the different projection anglesw! but
not only intensity of the other component. The exact profi
of the one-soliton solutions that become slightly asymme
due to the diffusion component of nonlinear response will
presented in the next section. Besides it will be shown t
the presence of even weak diffusion component results in
appearance of the specific multihump one-soliton soluti
allowing different projection states just as Manakov solito

The rather complicated expressions of the beam sha
for the second asymmetric solution~4! does not enable one
to obtain an analytical expression for the parabolic coe
cients and the only way is a numerical integration. Figure
shows the dependence of the parabolic coefficients dif
encea1-a2 on the values of propagation constantsb1 andb2
for the zero shifths . The plateau is due to the chosen abo
relationb1.b2 . One can see that for the definite values
propagation constantsb1,2 it is possible the regime of the
stable pair propagation, i.e., conditiona1-a250 is satisfied.
With increase of the beam centers shifths the region of
values ofb1,2 in which the stable pair propagation occu
significantly suppresses. The values ofb1 and b2 corre-
sponding to the stable pair propagation~the geometrical
place of points corresponding to the conditiona1-a250! for
the different shiftshs presented in Fig. 2. One can see th
all possibleb1,2 situated within the angle formed by tw
straight lines:b25b1 ~the existence condition for the asym
metric soliton state! and b250.414b1 ~specific boundary
condition for the two-soliton solution of the Manako
model!. Using the values ofb1 , b2, andhs defined from Fig.
3-3
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2 one can readily obtain from~4! the approximate analytica
expressions for the stable self-bend pairs profile. The la
method works especially well for the case of moder
propagation constants differenceb1-b2,0.8 because for the
higher values ofb1-b2 ~i.e., with increase of soliton energy!
the additional energy insight due to the presence of diffus
nonlinearity becomes more pronounced and can result in
pair decoupling after the propagation over the big~;10 dif-
fraction lengths! distance in PRC. Besides the calculation

FIG. 1. Dependence of the parabolic coefficients differen
a1-a2 for the constituents of two-soliton solution on the values
propagation constantsb1 and b2 for the zero soliton centers shif
hs . All quantities are plotted in arbitrary dimensionless units.

FIG. 2. The relation between propagation constantsb1 and b2

corresponding to the stable two-soliton pair propagation~condition
a1-a250! for the soliton centers shifths50 ~1!; 0.5 ~2!; 0.8 ~3!;
1.1 ~4!; 1.5 ~5!. The existence condition for the asymmetric tw
soliton state (b1.b2) is depicted by dotted line. All quantities ar
plotted in arbitrary dimensionless units.
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the trajectory calls for the additional numerical integratio
The next supplementing method enables one to overc
difficulties with trajectory calculation.

IV. THE EXACT PAIR SHAPES

For an arbitrary~the really achievable experimental va
ues are up to 0.4! value of parameterm describing the
strength of the diffusion component of PRC response
look for the stable self-bend soliton pair profile in the fo
lowing form:

q1,2~h,j!5r1,2S h2
aj2

2 DexpS i jS b1,21ah2
a2j2

3 D D .

~8!

Herea is the free parabolic parameter,b1,2 are the propaga-
tion constants as earlier,r1,2 are the real functions. This so
lution assumes that pair constituents conserve an invari
profile and move along the same parabolic trajectoryhp
5aj2/2. The angle between the instant direction of the p
propagation and thej axis is given byaj. Substituting~8!
into the system of shortened wave equations~1! and intro-
ducing the new parabolic variablez5h2aj2/2, one can ob-
tain thatr1,2 as the functions of new variablez fulfills the
following system of the coupled ordinary differential equ
tions of the second order

1

2

d2r1,2

dz2 5~b1,21az!r1,22r1,2~r1
21r2

2!

1mr1,2

d

dz
~r1

21r2
2!. ~9!

This system has three nontrivial free parametersb1,2 anda,
but can be significantly simplified if one takes into accou
the fact that only the differencedb5b1-b2 between the
propagation constants affects the shape of the soliton
due to the invariance to the shift along thez axis. Thus the
final system depends only on two parametersdb,a and has
the following form:

d2r1

dz2 52~db1az!r122r1~r1
21r2

2!

14mr1S r1

dr1

dz
1r2

dr2

dz D ,

d2r2

dz2 52azr222r2~r1
21r2

2!14mr2S r1

dr1

dz
1r2

dr2

dz D .

~10!

Notice that the described by the Eqs.~8!–~10! theoretical
approach to solution of the nonlinear Shrodinger equation
curved coordinates was first developed in@34#. In the general
case of nonzero values of parametersa andm the latter sys-
tem calls for the numerical integration and enables one
obtain the profiles of the stable soliton pair propagating
the PRC along the given trajectory thus supplementing
results presented above of the method of the effective

e
f

3-4
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ticles. Further we choose as the value of the parabolic
rameter the valuea5(8/15)m that describes, for example
the trajectory of the single hyperbolic-secant soliton w
unity amplitude@22–25#. Performing a numerical integratio
we have been looking for the spatially localized pair sha
that decrease faster than arbitrary power function asz→
6`. We used a shooting method that enables one to tr
form a two-point boundary problem into the Caushy pro
lem. The initial conditions were chosen from the assumpt
that atz→6`, when amplitudesr1,2 of the pair constituents
are small, we can neglect nonlinear terms in Eqs.~10!. Under
that assumption the initial condition is given by th
asymptotic of Airy function, which presents the solution
corresponding linear system

d2r1

dz2 52~db1az!r1 ,

d2r2

dz2 52azr2 , ~11!

and describes the form of nondiffracting beam in linear m
dium. Hence the initial values of functions and derivativ
were taken in the following form:

r1uz5z0
5m1Ai @2~2a!22/3~db1az!#uz5z0

,

r2uz5z0
5m2Ai @~2a!1/3z#uz5z0

,

dr1

dz U
z5z0

5m1

d

dz
Ai @2~2a!22/3~db1az!#uz5z0

,

dr2

dz U
z5z0

5m2

d

dz
Ai @~2a!1/3z#uz5z0

, ~12!

wherem1,2 is the new free parameters. Airy function whic
is widely used in quantum mechanics for description of
particle wave functions in the small regions near the turn
points has a comparatively long decaying oscillating t
However, changing the values of constantsm1,2 that deter-
mines the strength of nonlinear terms in system~10!, one can
compensate the oscillating tail and obtain different quasis
ton solutions.

First we considered the case of equal values of propa
tion constantsdb5b1-b250 that corresponds to the one
soliton solution of the Manakov model. Further we choo
the rather typical experimental value of the diffusion para
eter m50.1. The striking feature of the PRC with nonloc
component of nonlinear response is that the presence of
weak diffusion current results in the appearance of the s
cific multihump soliton solutions allowing different projec
tion states just as usual Manakov solitons with shape clos
the hyperbolic secant. For example such two-hump solu
presented in Fig. 3 together with standard first-order soli
solution for the case of parameterization anglew5p/6. The
first-order soliton solution becomes slightly asymmetric d
to the nonlocal component of PRC response: left wing
gently sloped than the right one. The second-order~two-
01660
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hump! soliton solution consists of two partially overlappin
beams. The cross-modulation coupling between them ac
an attractive force resulting in the equal self-bending des
the amplitude difference. On the left wing of the solutio
appears the small oscillations in accordance with asympt
expansions~12!. With the growth ofm, the peaks separatio
increases and peaks amplitudes remain practically
changed. It is possible to obtain more multihump solutions
the highest orders but the direct numerical simulation of
propagation of the obtained solutions shows that the hig
the order of solution the more it sensitive to the perturbatio
due to the noise and computational errors.

More complicated solutions are possible for the case
nonzero propagation constants differencedb. The typical
pair shapes up to the third order and corresponding refrac
index profiles presented in Figs. 4–6 show rather unus
behavior with increase of propagation constant differen
For the small values ofdb the shape of the first-order solu
tion can be approximately considered as a superpositio
two slightly overlapping first-order Manakov soliton pai
with different form factors and parameterization angles~the
example of the profile of such pair presented in Fig. 3
straight lines!. The form factor of the left beam is alway
lower than that of the right beam. With increase ofdb the
overlapping between mentioned above two beams incre
~compare plots~a! in Figs. 4, 5, and 6! finally resulting in
practically full coincidence of the beam centers and slig
asymmetry of the pair profile~plot ~a! in Fig. 6!. This is in
good agreement with results obtained in the previous sect
In accordance with Fig. 2, the higher the propagation c
stant difference the smaller the beam centers shifths describ-
ing the profile asymmetry. Notice that despite the consid
able asymmetry of the resultant shape of the first constitu
the amplitudes of two half-periods of the second constitu
are practically the same. The amplitudes of first and sec
constituents increase with growth ofdb.

FIG. 3. First-order~straight lines! and second-order~dotted
lines! soliton solutions corresponding to the zero propagation c
stants differencedb50. Parameterm50.1, parabolic parametera
5(8/15)m and projection anglew5p/6. Curves 1 depict first com-
ponentsr1 and curve 2 depict second componentsr2 of the soli-
tons. All quantities are plotted in arbitrary dimensionless units.
3-5
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FIG. 4. First- ~a!, second-~b!
and third-order~c! soliton solu-
tions corresponding to the case o
propagation constants differenc
db50.04. Curves 1 depict profiles
of the first soliton componentsr1

and curves 2 depict profiles of th
second soliton componentsr2 .
Subfigure~d! show the refractive
index profiles for the solitons of
the first ~dotted line! and second
~straight line! orders. Diffusion
parameterm50.1 and parabolic
parametera5(8/15)m. All quan-
tities are plotted in arbitrary di-
mensionless units.
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As for the case of zero value ofdb the presence of diffu-
sion term results in the appearance of the specific multihu
soliton solutions. That solutions are the analogs of the co
sponding multisoliton solutions of two coupled nonline
Shrödinger equations in the cubic medium. The nonlocal
sponse causes of spatial separation of the componen
such multisoliton complexes. The profiles of the multihum
soliton pairs of the second and third orders are presente
plots ~b! and ~c! in Figs. 4–6. With increase of the order o
solution n the oscillations on the left wing become mo
01660
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of

on

pronounced finally resulting in transformation of the pa
into the beam of infinite extent asn goes to infinity. Despite
the complicated profile of the higher-order pairs the cor
sponding refractive index profiles have very simple fo
presented on plots~d! in Figs. 4 and 5 for the solutions o
first and second orders. One can see that the refractive in
profiles for the solutions of different orders differ only b
peak numbers–two for the first order, three for the seco
and further. The distance between neighboring peaks
refractive index modulation depth decreases with the gro
f
e

e

FIG. 5. First- ~a!, second-~b!
and third-order~c! soliton solu-
tions corresponding to the case o
propagation constants differenc
db50.2. Curves 1 depict profiles
of the first soliton componentsr1

and curves 2 depict profiles of th
second soliton componentsr2 .
Subfigure~d! show the refractive
index profiles for the solitons of
the first ~dotted line! and second
~straight line! orders. Diffusion
parameterm50.1 and parabolic
parametera5(8/15)m. All quan-
tities are plotted in arbitrary di-
mensionless units.
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FIG. 6. First- ~a!, second-~b! and third-order~c! soliton solutions correspodning to the case of propagation constants differencdb
50.6 Curve 1 depict profiles of the first soliton componentsr1 and curves 2 depict profiles of the second soliton componentsr2. Subfigure
~d! show the refractive index profiles for the solitons of the first~dotted line! and second~straight line! orders. Diffusion parameterm50.1
and parabolic parametera5~8/15!m. All quantities are plotted in arbitrary dimensionless units.
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of propagation constant differencedb. Notice the rather un-
usual behavior of the profiles of the first and second cons
ents of the higher-order solutions presented in Fig. 6 t
connected with the symmetrization processes occur for
big values ofdb. The shape of the first constituent remai
practically unchanged with the growth of the solution orden
and the only changes occur at the right wing of the sec
component which is in fact decoupled with first compone
due to the small value of the latter. Increase ofdb results in
the further decoupling between the first and second cons
ents of the higher-order solutions.

With increase of the diffusion parameterm discussed
above solutions become more asymmetric. Distance betw
peaks of the solutions of any order increases and their
plitudes slightly decrease. When transfer into the new co
dinate system corresponding to the higher value of parab
parametera the amplitudes of the obtained solutions increa
asa1/4 and widths decrease asa21/4.

Further we consider the stability properties of the o
tained above solutions. The stability analysis is rather co
plicated by both the non-Hamiltonian character of the sys
under consideration and the lack of analytical expression
the field spatial distribution. Therefore we consider t
propagation dynamic of the soliton pairs with perturbed
put profiles on the basis of the numerical simulations. T
initial condition was chosen in the following way

q1,2~h,0!5r1,2~h!1dr~h!, ~13!

wherer1,2 is the solution under consideration,dr is the per-
turbation of the input profile. We considered both harmo
01660
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perturbationdr5dr0 cos(Vh) and stochastic perturbation i
the form of the Gaussian noise with the Lorenz correlat
function ^dr(h)dr* (h2h0)&5s@11(h0 /hc)

2#21, where
s is the noise intensity andhc is the correlation length.

Using beam propagation method we found that the fi
order soliton solutions are stable with respect to the sm
~up to 20% in amplitude! harmonic perturbations of the inpu
profiles for any reasonable modulation frequenciesV and
both cases of zero and nonzero propagation constant di
encedb. The typical picture of propagation dynamic of th
perturbed soliton pair is depicted in Fig. 7 for the case
db50.2. As one can see the soliton pair remainsstructurally
stable in the process of propagation, harmonic perturba
shows the quasiperiodic behavior while its spatial scale c
sequently increases. One can see that the output soliton
only changes their form factor~retaining the structure simila
to input one! and thus the curvature of the trajectory over t
propagation at considerable distance of 20 diffraction leng
~in experiment this corresponds to the PRC about 10
length! due to the additional energy contribution from th
harmonic perturbation. The higher-order soliton solutio
also shows good structural stability with respect to sm
harmonic perturbations but the numerical simulations sh
that the higher the order of the soliton solution the more i
sensitive to the frequency and especially the amplitude of
perturbation. Thus for example the same as for the first-or
soliton perturbation can cause the slow splitting of t
second-order soliton solution into the set of independ
first-order Manakov pairs moving along different trajectori
~see Fig. 8!. Nevertheless for the small enoughdr0 the
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higher-order solitons can propagate over the significant~up
to 20 diffraction lengths! distance without strong profile re
distribution. We obtained analogous results concerning
bility in the case of stochastic perturbation of the input p
files by a Gaussian noise.

Since we relate our discussion to the photorefractive m
terials ~demonstrating saturation of the nonlinear respon!,
we also consider the influence of weak saturation on
properties of the coupled soliton pairs discussed above an
addition the influence of the saturation on the structural
bility of the pairs. This activity is motivated by the wel
known fact@35,36# that in the case of multicomponent so
tons in the local saturable medium only symmetric solit
solutions are stable. While the nonsymmetric solutions
still be found numerically, they transform into symmetr
ones during propagation. If the saturation is very weak th
it will take much longer distance for this transformation
occur and thus one can still talk about asymmetric solito
We have found that in contradistinction to the case of lo
saturable medium the inclusion of even weak saturation
the medium with nonlocal component of the nonlinear
sponse leads to the growth of structural stability of the s
bend soliton pairs. Numerical simulation shows the sta
propagation of the perturbed asymmetric pairs in satura
medium over the distances exceeding one hundred diff
tion lengths without considerable changes in shapes of
constituents. Besides, the inclusion of saturation result
considerable increase of the perturbation level necessar

FIG. 7. Propagation dynamic of the first~a! and second~b!
components of the first-order soliton pair corresponding todb
50.2, m50.1 anda5(8/15)m in the presence of the small ha
monic perturbation of the input profiles. Dimensionless modulat
frequency V54.0 and amplitude of perturbationdr050.1. All
quantities are plotted in arbitrary dimensionless units.
01660
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destruction of the higher-order soliton pairs.
Another intriguing issue is the collision-induced pa

shapes transformations in the photorefractive medium w
diffusion component of nonlinear response. To study the c
lisions we set the initial conditions on the boundary of PR
in the following manner:

q1,2~h,0!5r1,2~h!exp@2 ibh1 iw#1r1,2~h1hs!

3exp@ ib~h1hs!#. ~14!

Herer1,2 are the profiles of the pair constituents; parame
hs characterizes initial spatial separation; parameterb deter-
mines the intersection angle andw is the relative phase dif-
ference. The typical in-phase pair collision dynamic is sho
in Fig. 9 for the first-order solution corresponding to th
propagation constant differencedb50.2 and intersection
angle b51.0. Because we consider here only the case
bright-bright pair interactions, the in-phase pairs attract e
other as in the case of Kerr materials. The attraction is gra
ally being replaced by repulsion as relative phase differe
increases from 0 top. The constituents of the pairs strong
overlap even in the repulsion regime for the small inters
tion angles. The energy redistribution processes leadin
the considerable collision induced shape transformation
much more pronounced for the pair collision in comparis
with single soliton collisions. Irrespectively the solution o
der, relative phase difference and value of the collision an

n

FIG. 8. Propagation dynamic of the first~a! and second~b!
components of the second-order soliton pair corresponding todb
50.2, m50.1, anda5(8/15)m in the presence of the small ha
monic perturbation of the input profiles. Dimensionless modulat
frequency V54.0 and amplitude of perturbationdr050.1. All
quantities are plotted in arbitrary dimensionless units.
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FIG. 9. In-phase collision of
two first-order solitons corre-
sponding to the case ofdb50.2,
m50.1, and a5(8/15)m. Inter-
section angleb51.0. Figures~a!,
~c! depict collision dynamic for
the first and second component
respectively. Figures~b!, ~d! de-
pict the input~straight lines! and
output ~dashed lines! intensity
profiles of the first and second
components, respectively. Al
quantities are plotted in arbitrary
dimensionless units.
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the pair collision causes of splitting into the two~or more!
Manakov soliton pairs of the first order~see Figs. 9~b! and
9~d! that show the output intensity profiles of the first a
second components!. Together with the results concernin
stability of the obtained above solutions this means t
Manakov soliton pair is the most stable structure in the m
dium with nonlocal component of nonlinear response. T
resultant number of the Manakov pairs strongly depe
from the order of the colliding soliton pairs and intersecti
angles but practically independent on relative phase dif
ence. The last one strongly affects only the amplitudes of
pairs born upon collision and dynamic in the area of
intersection. Thus the collision of two identical first-ord
Manakov pairs causes of appearance of two pairs with
ferent energies if intersection angleb,3.0. For the higher
values ofb it is possible birth of up to four pairs. Collision
of the solitons corresponding to the nonzerodb always re-
sults in the appearance of more than two Manakov pairs.
the small angles~for example for the collision of the two
first-order pairs corresponding todb50.2 angleb should be
less than approximately 2.0! usually appear three Manako
pairs ~see Fig. 9!. As angle and colliding solitons order~in
fact the increase of the order means the increase of the o
all energy used in collision! increases the number of pai
that can be born upon collision increase and can reach fiv
more. The variety of the energy redistribution processes
d

P

01660
t
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e
s

r-
e

e

f-

or

er-

or
c-

cur under the pair collision in the PRC with diffusion curre
make such medium especially attractive for the optical
vices construction.

V. CONCLUSION

To summarize the paper, let us briefly list our main resu
and conclusions. By the effective particle method, we ha
shown that in the presence of the drift component of non
earity the Manakov’s pair propagates along the parabolic
jectory with the coefficient given by Eq.~5! and remains
stable. In the case of asymmetric initial conditions@Eq. ~4!#
it was found that for definite values of propagation const
the quasistable propagation of both constituents of the s
ton pair along the parabolic trajectory is also possible. T
system of equations describing the profiles of the coup
soliton pairs was solved numerically in curved coordinat
The single soliton solution is slightly asymmetric and t
multisoliton solution looks like a multihumped beam. Th
stability analysis has shown that this single-soliton solut
shows structural stability with respect to the small pertur
tions but the multisoliton solution is more sensitive to t
perturbations and shows tendency to the splitting into the
of Manakov’s pairs. During the collision, the energy red
tribution processes lead to the considerable transformatio
the profiles of the resulting beams with the obvious tende
to the several stable Manakov pairs formation.
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