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The propagation of two incoherently coupled laser be&oasipled soliton paijsin the photorefractive
crystal with drift and diffusion components of nonlinear response is investigated. By the effective particles
method we have shown that not only the well-known Manakov’s soliton pairs but also asymmetric pairs can
propagate undistorted in photorefractive crystal with diffusion nonlinearity along the parabolic trajectory for
the definite relations of propagation constants. We numerically found the exact profiles of the specific multi-
hump soliton solutions that are possible only in the photorefractive medium with nonlocal diffusion response.
The stability properties and specific features of pair collisions are analyzed.
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. INTRODUCTION eterl/l 4o, i.€., by Kerr-type law. It should be noted that the
effective level of the dark conductivity could be considerably
Spatial solitons in photorefractive crystalBRQ have increased due to the introduction of the external background
been of growing interest during the past several years. Afijumination. Mathematical justification of the applicability
least three generic types of the plartgt+1)-dimensional  of the Kerr-type model for the photorefractive medium can
photorefractive solitons have been predicted and observed tse found in[5] (see for example Eq(24)) and[16] (Eq.
the date. First, the quasi-steady-state solitons exist in PRQ7)). The further decrease of the transverse beam extent
when an external applied field is slowly being screefigd].  causes the increase of the influence of the nonlocal diffusion
The second type is the so-called screening solitons that occébmponent of PRC response leading to the self-bending ef-
in a steady state when the external field is nonuniformlyfect [17-21. The influence of this nonlocal component on
screened3-8]. The third type is the photovoltaic solitons the single laser beams shaping and interaction was examined
[9]. Photorefractive spatial solitons can occur at microwatin great detail for the case of the self-bending of the one-
power levels. Therefore PRC's are extremely suitable matecomponent photorefractive solitofg2], as well as for the
rials for nonlinear switching optical devices construction.case of temporal solitons in the medium with Raman com-
The concept of such devices is based on the fact that thgonent of the nonlinear respong23]. The behavior of the
soliton is a fundamental mode of the optical waveguidetwo incoherently coupled beams in PRC with nonlocal re-
which it creates in a photorefractive medium. Structuressponse calls however for the separate consideration. In the
formed by intersecting waveguidése., by colliding coher-  present paper we concentrate on the self-bending of two-
ent[10-13 and incoherenf14,15 solitong are especially component optical solitons produced by the incoherent cross-
attractive from the practical point of view. modulation coupling of (#1) dimensional laser beams
Another intriguing issue—the cross-modulation couplingwith the specific shapes. The interest to this problem is mo-
of incoherent solitonlike (*+ 1) dimensional beams in pho- tivated not only by the reason of theoretical generalization of
torefractive media exhibiting purely drifquasilocal nonlin-  the previous results but also by possible applications in de-
earity of the Kerr type—also was subjected to the carefulices of light-by-light control and for pure optical waveguid-
consideratior(see[4] and references cited hergiiThe Kerr-  ing. Multicomponent solitons offer new possibilities in the
type regime of nonlinearity can be realized in photorefractiveflexible changing relation between the maximal increment of
crystal under the influence of the high static external electrithe refractive index and the nonlinear waveguide width
field for a relatively wide(20—50um) laser beams if photo- Below the results of theoretical analysis and computer
induced conductivity is considerably less than the dark consimulation of the influence of nonlocal component of nonlin-
ductivity (i.e., when the intensity of the laser beans small  ear response on the coupled soliton pair propagation and
compared with the dark irradiance levigl). In this case interaction are presented. Using the effective particle method
the saturable response of the photorefractive medium can hwee look for the trajectories of the coupling beams having the
described by the first term of the expansion on small paraminput profiles given by the well-known solutions for the case
of Kerr-type nonlinearity. Further the exact profiles for the
self-bending two-component spatial solitons are presented.
*Corresponding author. FAX: (095 939-14-89. Email:  Stability of these solutions and specific features of their col-
azesh@gateway.phys.msu.su lisions are also examined by computer simulation.
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Il. THEORETICAL MODEL Equation(1) is analogous to that describing the Raman

To describe the propagation of the coupled soliton pair inself—frequency shift in the time domaj24,25. In the latter

the photorefractive medium with drift and diffusion nonlin- case coordma.te; corresponds to the nc_)rmgllzed running

: . . . time (t-z/c)/ ry; & corresponds to the longitudinal coordinate
earity we apply the well established technique which uses theL normalized by the dispersion I —2|K]:
standard shortened wave equation completed with a set 5{ a normalized by the dispersion lengtly= 75 » pa-

charge-transport equations describing the photorefractive e ametery is proportional to t.he. ra.tmR/TO' whererg is the .
fect in a nonlinear mediurf3—8]. Further we consider the aman response characteristic time. Thus the model consid-

case when two laser beams sharing the same polarization aﬁEFd _here could I_oe a!so referred to the case of temp_o_ral .SOI"
having practically the same wavelengths launched onto th ns in Kerr medium in the presence of Raman amplification
input face of the photorefractive crystal with rather large 23]. . .

characteristic response time, so, that the wave numbers We searqh for th? solution of the systdd) in the stan-
difference Ak greatly exceeds &k, . Thus, no stationary dard way introducing the real envelopqsl_z S0 that
interference pattern can form within a time scale comparabld1.A7:€) = p1A7)exp(b,;£). After the substitution one
with the response time of the crystal and nonlinear refractivéd! obtr_:un the fpllowmg system of the .coupled nonlinear
index perturbation is defined only by the modal sum of in_dlfferentlal equations of the second order:

tensities of the laser beams. Under this assumption the joint
solution of the shortened wave equation and charge-transport dzplyg_ ) ) d ) 5
equations for the photorefractive crystals with rather large d—,72_2Pl,2 by 2= (1" +p2 Vr“ﬁ(l"l 27|
dark conductivity and a weak diffusion current results in the 2
following system of the coupled wave equations for the nor-

malized complex field amplitudes, o 7,£):

The latter system can be integrated for example with the aid
901 2 1 529y of methods of the inverse scattering transfdi&ir) only for
i —= “— gy |a1]2+ 922 the case of the purely drift nonlinearity, i.e., when parameter
p=0. There are two well-known types of bright-soliton so-
9 lutions (besides the trivial case when one of the components
+MQ1,26,—(|Q1|2+ |921?)- (1) s zerg of the system(2) with zerou had been presented to
n the date. The first onéhe one-soliton solution of the Mana-

Here »=x/x, is the normalized transverse coordinatg;is KOV mode) is possible for the equal values of the propaga-
an arbitrary spatial scal&=z/L is the normalized propa- tion constantd, =b,=b and can be written in the following
gation distancel4=kx2 is the diffraction length, corre- Way [26]:

sponding tox,; k=ngw/c is the wave number, is the

unperturbed refraction index; is the central radiation fre- p1=(2b)¥2cose secti(2b) 7],

quency. SEP n%é) = hAl,z( 71?(Rd}_/ Iltg”z:R Al,ZE n}f) is tte ®
amplitude of the light field; Ry,=L4/L;; . .

=2/(krno’Eo) is the nonlinear refraction lengthy is the p2=(2b)"2sing secti(2b)* ),

effective electro-optic coefficientE, is the static electric

field applied to PRC in the transversedirection; |4 de-  whereg is arbitrary projection angle. The constituents of the
scribes the dark conductivity of the PRC; parameiede-  solution (3) are purely symmetric and have the same func-
scribes the magnitude of the nonlocal diffusion componentional dependence on. In our case of coupled soliton pairs
of PRC response. The sign pfdepends on the direction of these two components can be considered ag fhjections
the externally applied electric fiell,. The last term in the of the fundamental bright-soliton envelope. Such stable
right side of Eq.(1) describes the self-bending effects result- pairs, which have been first realized as a stable pair of laser
ing due to the energy transfer from the low- to the high-pulses with orthogonal polarization in nonlinear waveguides
frequency spatial components. The first term in the right parf27], have been observed recently in PRZB]. The second

of Eq. (1) describes the diffraction spreading of the beamstype of bright-soliton solutior(the two-soliton solution of
the second one describes its self-focusing due to the drifhe Manakov modglis possible for the different values of
component of nonlinear response which is quasilocal in thg@ropagation constants and for example for the casé;of
one-dimensional case. >h, have the following forn{29,30;:

! Pl 2 Jan°

_ [2(b1—b2)]1’zcosf[d2(77— 7s)]
P~ coshd, 7]costidy(7— 76)1— (b2 /by) P2sint dy 7]sind do(7— 79)]”

B [2(b;— by) [¥2sinf{d; 7]
P27 (b, 1b,) "2 cosh d; 7]coshd,(7— 75) ] — sinH dy 7]sinH do(7— 7)1

4
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Here parametem describes the shift between centers ofHere we introduced the beam powers,= [ ofxplyzzdr] and
constituents of the pair and we introduced the notatidpns beam center coordinates
=(2b,)¥?andd,=(2b,)"? In terms of popular approach it

can be shown that the first component(4f is a zero-order (" 2 o 2
linear mode of the self-induced waveguide and the second .2~ fﬁwple 7d7 J:wm,z d7.
component is the first-order linear mode. One can see that in

contradistinction with(3) there exist three parameters de- As discussed earliep; , is the real beam shapéfor ex-
Scribing the soliton prOﬁIe. In general the solution of tRe amp|e unperturbed prof”es given mg) and (4)) One can

coupled nonlinear Shdinger equations is defined byN21  see from Eq(5) that the constituents of the pair move along
free parameters\ propagation constants describing the am-the parabolic trajectories

plitudes of the solitons antl-1 beam center coordinates
describing the beam center positions, i.e., coupling between N1.0= a1 %12, (7)
constituents. Thus with increase of paramepgrthe asym-
metry of the solutior{4) increases finally resulting in decou- which is defined by both the intensity of each constituent and
pling of the pair into the two independent solitons whgn  common intensity profile. If the pair constituents start their
— o0, Both solutions(3) and(4) can be obtained in terms of propagation along the different trajectories then the pair de-
IST and are known to be structurally stable with respect tacouples and expressi@h) is valid only at the initial stage of
the small and collision-type perturbatiof80,31]. Neverthe-  propagation, due to the strong perturbation of the beam pro-
less, one should take into account that in any real experimerfiles through the decoupling. But the opposite case of stable
the needed 1D diffraction and self-interaction can be realizegiropagation enables one to readily obtain the approxifiate
only by using slit beams with uniform field distribution in is expected that for the typical experimental valuesuof
direction orthogonal t& and #. In doing so, one must take ~0.1 the relative shape transformation in the propagation
into account a possibility of beam filamentation, which canprocess is of the order gf) analytical profiles of the pair
develop on PRC length due to modulation instabil@2,33.  constituents.

The inclusion of the diffusion term in the right side of Eq.  First we considered the one-soliton soluti8) and ob-
(2) (the case of nonzerp) drastically changes the picture tained that as for the case of the single bd@#-25 the
even for the very small value @f. No more nondistorting in  Manakov pair shows the stable propagation along the para-
propagation process localized soliton solutions are possibldolic trajectory Witha1’2=(32/15),ub2 despite the amplitude
For the case of equal propagation constants the specific nodifference of the pair constituents. This is due to the fact that
diffracting solution can be expressed in terms of two coupledhe given constituent “feels” the common intensity profile
bright shock waves which can be thought ag projections  (which is the same for the different projection angigsbut
of the fundamental shock way&6] analogously to the one- not only intensity of the other component. The exact profiles
component Manakov solitons. For the nonequal propagatioof the one-soliton solutions that become slightly asymmetric
constants the solution has an even more complicated form afue to the diffusion component of nonlinear response will be
the coupled bright and dark shock waves. But further we ar@resented in the next section. Besides it will be shown that
interested only in the localized self-bend soliton pairs thathe presence of even weak diffusion component results in the
can be found with the aid of two methods presented belovappearance of the specific multihump one-soliton solutions
(effective particles method and transformation into the paraallowing different projection states just as Manakov solitons.

(6)

bolic coordinate systeptompleted one another. The rather complicated expressions of the beam shapes
for the second asymmetric solutigd) does not enable one
IIl. THE EFFECTIVE PARTICLES METHOD to obtain an analytical expression for the parabolic coeffi-

cients and the only way is a numerical integration. Figure 1
In this section we consider the trajectories of the pairingshows the dependence of the parabolic coefficients differ-
beams having the input profiles presented®yand(4) and  encea;-a, on the values of propagation constabfsandb,
launched into the PRC with a nonlocal component of nonlinfor the zero shifty,. The plateau is due to the chosen above
ear response. The propagation trajectory can be easily foun@ationb,>b,. One can see that for the definite values of
with the aid of the method of the effective particles which is propagation Constanﬂslz it is possib|e the regime of the
frequently used in quantum mechanics and enables one taple pair propagation, i.e., conditiag-a,=0 is satisfied.
obtain the trajectories of particle motion in different poten-\yith increase of the beam centers shiff the region of
tials if the evolution of the localized particle wave function is yg|yes ofb, , in which the stable pair propagation occurs
governed by the equation of the ty( (perturbed nonlinear  gjgnificantly suppresses. The values lof and b, corre-
Shradinger equation With this method one can obtain that sponding to the stable pair propagatigthe geometrical
the localized (that means bothq, (7—*+=,§)=0 and  pjace of points corresponding to the conditmpa,=0) for
99, A 7— = ,£)/d7=0) pairing beams trajectories in the the different shiftsz, presented in Fig. 2. One can see that
PRC with nonlocal component in nonlinear response is givery| possibleb, , situated within the angle formed by two
by straight lines:b,=b; (the existence condition for the asym-
42 . d q metric soliton state and b,=0.41%, (specific boundary
Wy 5 ’71,2:Mf — 2 ——(pP+p2)dy. (5 condition for the two-soliton solution of the Manakov
Z dé = dp b2 dy mode). Using the values db;, b,, and 7 defined from Fig.
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a -a [ 4 the trajectory calls for the additional numerical integration.
1 2 4 The next supplementing method enables one to overcome
difficulties with trajectory calculation.

IV. THE EXACT PAIR SHAPES

For an arbitrary(the really achievable experimental val-
ues are up to O)value of paramete describing the
strength of the diffusion component of PRC response we
look for the stable self-bend soliton pair profile in the fol-
lowing form:

a2 2
bl,2+ a.7]_ T) ) .
®

Herea is the free parabolic parametér, , are the propaga-
tion constants as earliep, , are the real functions. This so-
lution assumes that pair constituents conserve an invariable
profile and move along the same parabolic trajectepy
=a£?/2. The angle between the instant direction of the pair
propagation and thé¢ axis is given byaé. Substituting(8)
into the system of shortened wave equati¢bsand intro-

FIG. 1. Dependence of the parabolic coefficients differenceducing the new parabolic variable= 77_352/2, one can ob-
a;-a, for the constituents of two-soliton solution on the values of tgjn thatp , as the functions of new variablefulfills the

propagation constants; andb, for the zero soliton centers shift fo|lowing system of the coupled ordinary differential equa-
7s. All quantities are plotted in arbitrary dimensionless units. tions of the second order

ag? .
A 7.6)= pl,z< n— 7) exn( ¥3

2 one can readily obtain frortd) the approximate analytical 1d%py, 5 )

expressions for the stable self-bend pairs profile. The latter > d—gzz(bl,Z“L ad)p1o—p1rApP1"t p2°)

method works especially well for the case of moderate

propagation constants differenbe-b,<0.8 because for the 5 5

higher values ob;-b, (i.e., with increase of soliton energy +,up1,2d—§(p1 +p2). ©

the additional energy insight due to the presence of diffusion

nonlinearity becomes more pronounced and can result in théhis system has three nontrivial free parametgrs anda,

pair decoupling after the propagation over the biglO dif-  but can be significantly simplified if one takes into account

fraction lengthg distance in PRC. Besides the calculation ofthe fact that only the differencéb=b;-b, between the
propagation constants affects the shape of the soliton pair

2.0 due to the invariance to the shift along thiexis. Thus the
- ] final system depends only on two parametéosa and has
S the following form:
S 157
h— 1 d2
o ] P1 2. 2
c ] F:2(5b+a§)P1_2P1(P1 +p2°)
g 4
- 1.0
d d
3 ey dpo
‘g +4upa| pa az P2 az |
@
S 051
o d?p, dpy dp;
s d_gz:235P2_2P2(P12+P22)+4MP2 gz TPrqs |
0.0 = — T T T AL (10)
0.0 0.5 1.0 15 2.0 2.5
propagation constant b1 Notice that the described by the Eq8)—(10) theoretical

approach to solution of the nonlinear Shrodinger equations in
FIG. 2. The relation between propagation constamtandb,  curved coordinates was first developed3#]. In the general
corresponding to the stable two-soliton pair propagat@mdition ~ case of nonzero values of parametarand w the latter sys-
a;-a,=0) for the soliton centers shifys=0 (1); 0.5 (2); 0.8 (3);  tem calls for the numerical integration and enables one to
1.1 (4); 1.5 (5). The existence condition for the asymmetric two- obtain the profiles of the stable soliton pair propagating in
soliton state §b;>b,) is depicted by dotted line. All quantities are the PRC along the given trajectory thus supplementing the
plotted in arbitrary dimensionless units. results presented above of the method of the effective par-
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ticles. Further we choose as the value of the parabolic pa-

rameter the valua=(8/15)u that describes, for example,

the trajectory of the single hyperbolic-secant soliton with

unity amplitudg/22—25. Performing a numerical integration

we have been looking for the spatially localized pair shapes <

that decrease faster than arbitrary power function{as 3—

+oo, We used a shooting method that enables one to trans-g

form a two-point boundary problem into the Caushy prob-

lem. The initial conditions were chosen from the assumption ]

that at{— =, when amplitudep, , of the pair constituents

are small, we can neglect nonlinear terms in Ef§). Under

that assumption the initial condition is given by the 7

asymptotic of Airy function, which presents the solution of ——————— ——————

corresponding linear system 0 5 10 15 20
2 g

d
=P _2(sb+al)ps,

d(z FIG. 3. First-order(straight line$ and second-ordefdotted
lines) soliton solutions corresponding to the zero propagation con-
dzpz stants differenceSb=0. Parametep.=0.1, parabolic parameter
d_gz =2alpy, (13) =(8/15)x and projection angle = /6. Curves 1 depict first com-

ponentsp; and curve 2 depict second componepssof the soli-

and describes the form of nondiffracting beam in linear metons. All quantities are plotted in arbitrary dimensionless units.
dium. Hence the initial values of functions and derivatives
were taken in the following form: hump soliton solution consists of two partially overlapping
oA BNy e e e e s ek renan et
, the amplitude difference. On the left wing of the solution
pal = ;= MAI[(22) ¢, appears the small oscillations in accordance with asymptotic
expansiong12). With the growth ofu, the peaks separation

dpy d _o3 increases and peaks amplitudes remain practically un-

d_g — - mld—§A|[2(2a) (6b+ ag)]|§:§0, changed. It is possible to obtain more multihump solutions of

0 the highest orders but the direct numerical simulation of the

d d propagation of the obtained solutions shows that the higher

Zp2 = mz—Ai[(Za)1’3§]|{,§ , (12)  the order of solution the more it sensitive to the perturbations
dfl,_,, 9 0 due to the noise and computational errors.

More complicated solutions are possible for the case of

wherem, , is the new free parameters. Airy function which nonzero propagation constants differendie. The typical
is widely used in quantum mechanics for description of thepair shapes up to the third order and corresponding refractive
particle wave functions in the small regions near the turningndex profiles presented in Figs. 4—6 show rather unusual
points has a comparatively long decaying oscillating tail.behavior with increase of propagation constant difference.
However, changing the values of constamntg, that deter- For the small values ofb the shape of the first-order solu-
mines the strength of nonlinear terms in systéi), one can tion can be approximately considered as a superposition of
compensate the oscillating tail and obtain different quasisolitwo slightly overlapping first-order Manakov soliton pairs
ton solutions. with different form factors and parameterization andi

First we considered the case of equal values of propagaxample of the profile of such pair presented in Fig. 3 by
tion constantsSb=b;-b,=0 that corresponds to the one- straight line$. The form factor of the left beam is always
soliton solution of the Manakov model. Further we chooselower than that of the right beam. With increase &if the
the rather typical experimental value of the diffusion param-overlapping between mentioned above two beams increases
eter u=0.1. The striking feature of the PRC with nonlocal (compare plotga) in Figs. 4, 5, and Bfinally resulting in
component of nonlinear response is that the presence of evemactically full coincidence of the beam centers and slight
weak diffusion current results in the appearance of the speasymmetry of the pair profiléplot (a) in Fig. 6). This is in
cific multihump soliton solutions allowing different projec- good agreement with results obtained in the previous section.
tion states just as usual Manakov solitons with shape close tm accordance with Fig. 2, the higher the propagation con-
the hyperbolic secant. For example such two-hump solutiostant difference the smaller the beam centers shittescrib-
presented in Fig. 3 together with standard first-order solitoring the profile asymmetry. Notice that despite the consider-
solution for the case of parameterization angke w/6. The  able asymmetry of the resultant shape of the first constituent,
first-order soliton solution becomes slightly asymmetric duethe amplitudes of two half-periods of the second constituent
to the nonlocal component of PRC response: left wing isare practically the same. The amplitudes of first and second
gently sloped than the right one. The second-or@d@io-  constituents increase with growth éb.
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2 (@) ] ()
~ . ~ 08
:" 061 5,‘ 0.4 1 FIG. 4. First-(a), second-(b)
8_ 8 and third-order(c) soliton solu-
_(c“ 00 o 0.0 tions corresponding to the case of
[ 9 [z propagation constants difference
0.4 5b=0.04. Curves 1 depict profiles
of the first soliton components;
06 0 10 15 20 0.8 0 5 10 15 20 and curves 2 depict profiles of the
4 second soliton componentg,.
Subfigure(d) show the refractive
1.2 (c) 187 index profiles for the solitons of
the first (dotted ling and second
~ 0.81 12] (straight line orders. Diffusion
& 041 1 - ’ parameteru=0.1 and parabolic
A N parametera= (8/15)u. All quan-
3 0,01 © 0.6 tities are pIotte_d in arbitrary di-
S mensionless units.
-0,4 2
0.0
08 ' 10 15 20 0 5 10 15 20
G

pronounced finally resulting in transformation of the pair

As for the case of zero value @b the presence of diffu-
sion term results in the appearance of the specific multihumjnto the beam of infinite extent asgoes to infinity. Despite

soliton solutions. That solutions are the analogs of the correthe complicated profile of the higher-order pairs the corre-
sponding multisoliton solutions of two coupled nonlinear sponding refractive index profiles have very simple form
Shradinger equations in the cubic medium. The nonlocal represented on plotéd) in Figs. 4 and 5 for the solutions of
sponse causes of spatial separation of the components fifst and second orders. One can see that the refractive index
such multisoliton complexes. The profiles of the multihumpprofiles for the solutions of different orders differ only by
soliton pairs of the second and third orders are presented queak numbers—two for the first order, three for the second
plots (b) and(c) in Figs. 4—6. With increase of the order of and further. The distance between neighboring peaks and
solution n the oscillations on the left wing become more refractive index modulation depth decreases with the growth

1,2+ (@) 1,2+ (b)
., 0.8 ., 08
N 1 a
: 047 8 04 1 FIG. 5. First-(a), second-(b)
% 0.0 % 0.0 and third-order(c) soliton solu-
c < ' tions corresponding to the case of
@ 0,41 2 0,4 2 propagation constants difference
6b=0.2. Curves 1 depict profiles
08 __ i = — _ 0,81 of the first soliton components,
0 10 15 20 and curves 2 depict profiles of the
g second soliton componentg,.
1,57 (©) 1,67 Subfigure(d) show the refractive
index profiles for the solitons of
o 10 1,21 the first (dotted liné and second
& 1 (straight line orders. Diffusion
o 057 : 3 08 7 .
i o v parameteru=0.1 and parabolic
& 00 w parametem=(8/15)u. All quan-
S 0,41 tities are plotted in arbitrary di-
-0,54 2 mensionless units.
0,01
-1,0 T T T T ) T T ,
0 10 15 20 0 5 10 15 20
G G
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"1 () "1 (b)
- 1,04 - 1,0
3 &
o 05 1 o 05 1
[} [0]
Q Q.
© 0,0 © 0,0
% 5 5
05 0,5 2
-1,0 -1,0
0 5 10 15 20 0 5 10 15 20
a 4
"1 (@) BRC)
1,04
Nr
a
» 057 1
Q
Q.
2 0,01
[/
-0,51 2
-1,0 T T T , . . T -
0 5 10 15 20 0 5 10 15 20
¢ €

FIG. 6. First-(a), second-(b) and third-order(c) soliton solutions correspodning to the case of propagation constants diffefbnce
=0.6 Curve 1 depict profiles of the first soliton compongntsnd curves 2 depict profiles of the second soliton componentSubfigure
(d) show the refractive index profiles for the solitons of the fidkitted ling and secondstraight ling orders. Diffusion parametet=0.1
and parabolic parameter=(8/15u. All quantities are plotted in arbitrary dimensionless units.

of propagation constant differené&. Notice the rather un- perturbationdp= 8p, cos€)z) and stochastic perturbation in
usual behavior of the profiles of the first and second constituthe form of the Gaussian noise with the Lorenz correlation
ents of the higher-order solutions presented in Fig. 6 thafunction ( 5p(7) 8p* (71— 10))= o[ 1+ (10/7c)?] "%, where
cpnnected with the symmetrlzanon.processe.s occur for. thg is the noise intensity ang, is the correlation length.

big values oféb. The shape of the first constituent remains Using beam propagation method we found that the first-
practically unchanged with the growth of the solution omer o qar soliton solutions are stable with respect to the small
and the only change_s oceur at the right wing of the SeCm&up to 20% in amplitudeharmonic perturbations of the input
component which is in fact decoupled with first componentprofiles for any reasonable modulation frequenciesand

due to the small value of the latter. Increasesbfresults in . .
the further decoupling between the first and second constitubOth cases of zero and nonzero propagation constant differ-

ents of the higher-order solutions. encedb. The _typical _pif:ture qf propaga_tion dynamic of the
With increase of the diffusion parametgr discussed perturbed soliton pair is deplctgd in F_|g. 7 fqr the case of
above solutions become more asymmetric. Distance betweélp — 0-2: AS one can see the soliton pair rematrscturally
peaks of the solutions of any order increases and their anf{@ble in the process of propagation, harmonic perturbation
plitudes slightly decrease. When transfer into the new coorShows the quasiperiodic behavior while its spatial scale con-
dinate system corresponding to the higher value of paraboligedquently increases. One can see that the output soliton pair
parameten the amplitudes of the obtained solutions increasePnly changes their form factdretaining the structure similar
asal and widths decrease as Y4 to input one and thus the curvature of the trajectory over the
Further we consider the stability properties of the ob-propagation at considerable distance of 20 diffraction lengths
tained above solutions. The stability analysis is rather com¢in experiment this corresponds to the PRC about 10 cm
plicated by both the non-Hamiltonian character of the systenfength due to the additional energy contribution from the
under consideration and the lack of analytical expression foharmonic perturbation. The higher-order soliton solutions
the field spatial distribution. Therefore we consider thealso shows good structural stability with respect to small
propagation dynamic of the soliton pairs with perturbed in-harmonic perturbations but the numerical simulations show
put profiles on the basis of the numerical simulations. Thehat the higher the order of the soliton solution the more it is

initial condition was chosen in the following way sensitive to the frequency and especially the amplitude of the
perturbation. Thus for example the same as for the first-order
Q1A 7,.0)=p1 A7)+ p(n), (13 soliton perturbation can cause the slow splitting of the

second-order soliton solution into the set of independent
wherep, , is the solution under consideratiofp is the per-  first-order Manakov pairs moving along different trajectories
turbation of the input profile. We considered both harmonic(see Fig. 8 Nevertheless for the small enougip, the
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FIG. 7. Propagation dynamic of the firét) and secondb) FIG. 8. Propagation dynamic of the firéa) and secondb)
components of the first-order soliton pair correspondingéto  components of the second-order soliton pair correspondingpto
=0.2, u=0.1 anda=(8/15)u in the presence of the small har- =0.2, ;4 =0.1, anda=(8/15)x in the presence of the small har-
monic perturbation of the input profiles. Dimensionless modulationmonic perturbation of the input profiles. Dimensionless modulation
frequency 1=4.0 and amplitude of perturbatiofpy=0.1. All  frequency Q=4.0 and amplitude of perturbatiofp,=0.1. All
quantities are plotted in arbitrary dimensionless units. quantities are plotted in arbitrary dimensionless units.

higher-order solitons can propagate over the significapt  gestruction of the higher-order soliton pairs.
to 20 diffraction lengthsdistance without strong profile re- Another intriguing issue is the collision-induced pair

distribution. We obtained analogous results concerning stashapes transformations in the photorefractive medium with
bility in the case of stochastic perturbation of the input pro-gitfusion component of nonlinear response. To study the col-

files by a Gaussian noise. . lisions we set the initial conditions on the boundary of PRC
Since we relate our discussion to the photorefractive may, the following manner:

terials (demonstrating saturation of the nonlinear resppnse
we also consider the influence of weak saturation on the U A 7,00 =p1A pexd —iBn+iel+pid 7+ 1)
properties of the coupled soliton pairs discussed above and in

addition the influence of the saturation on the structural sta- xXexfiB(n+ ns)]. (14
bility of the pairs. This activity is motivated by the well-

known fact[35,36] that in the case of multicomponent soli- Herep, , are the profiles of the pair constituents; parameter
tons in the local saturable medium only symmetric solitonzs characterizes initial spatial separation; paramgteeter-
solutions are stable. While the nonsymmetric solutions camines the intersection angle amdis the relative phase dif-
still be found numerically, they transform into symmetric ference. The typical in-phase pair collision dynamic is shown
ones during propagation. If the saturation is very weak thein Fig. 9 for the first-order solution corresponding to the
it will take much longer distance for this transformation to propagation constant differencéb=0.2 and intersection
occur and thus one can still talk about asymmetric solitonsangle 8=1.0. Because we consider here only the case of
We have found that in contradistinction to the case of locabright-bright pair interactions, the in-phase pairs attract each
saturable medium the inclusion of even weak saturation imther as in the case of Kerr materials. The attraction is gradu-
the medium with nonlocal component of the nonlinear re-ally being replaced by repulsion as relative phase difference
sponse leads to the growth of structural stability of the selfincreases from 0 ter. The constituents of the pairs strongly
bend soliton pairs. Numerical simulation shows the stableverlap even in the repulsion regime for the small intersec-
propagation of the perturbed asymmetric pairs in saturabléon angles. The energy redistribution processes leading to
medium over the distances exceeding one hundred diffrache considerable collision induced shape transformations is
tion lengths without considerable changes in shapes of theauch more pronounced for the pair collision in comparison
constituents. Besides, the inclusion of saturation results imith single soliton collisions. Irrespectively the solution or-
considerable increase of the perturbation level necessary faler, relative phase difference and value of the collision angle
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FIG. 9. In-phase collision of
two first-order solitons corre-
sponding to the case afb=0.2,
©=0.1, and a=(8/15)u. Inter-
section angle3=1.0. Figures(a),
(c) depict collision dynamic for
the first and second components,
respectively. Figuregb), (d) de-
pict the input(straight line$ and
output (dashed lines intensity
profiles of the first and second
components, respectively. All
quantities are plotted in arbitrary
dimensionless units.
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the pair collision causes of splitting into the twor more cur under the pair collision in the PRC with diffusion current
Manakov soliton pairs of the first ordésee Figs. @) and make such medium especially attractive for the optical de-
9(d) that show the output intensity profiles of the first andvices construction.

second componentsTogether with the results concerning

stability of the obtained above solutions this means that V. CONCLUSION

Manakov soliton pair is the most stable structure in the me- 1o symmarize the paper, let us briefly list our main results

dium with nonlocal component of nonlinear response. Theand conclusions. By the effective particle method, we have
resultant number of the Manakov pairs strongly dependshown that in the presence of the drift component of nonlin-
from the order of the colliding soliton pairs and intersectionearity the Manakov’s pair propagates along the parabolic tra-
angles but practically independent on relative phase differjectory with the coefficient given by Eq5) and remains
ence. The last one strongly affects only the amplitudes of thetable. In the case of asymmetric initial conditidis). (4)]
pairs born upon collision and dynamic in the area of theit was found that for definite values of propagation constant
intersection. Thus the collision of two identical first-order the quasistable propagation of both constituents of the soli-
Manakov pairs causes of appearance of two pairs with difton pair along the parabolic trajectory is also possible. The
ferent energies if intersection angk<3.0. For the higher system of equations describing the profiles of the coupled
values ofg it is possible birth of up to four pairs. Collision soliton pairs was solved numerically in curved coordinates.
of the solitons corresponding to the nonzeito always re- The single soliton solution is slightly asymmetric and the
sults in the appearance of more than two Manakov pairs. Fanultisoliton solution looks like a multihumped beam. The
the small anglegfor example for the collision of the two stability analysis has shown that this single-soliton solution
first-order pairs corresponding #b=0.2 angleB should be  shows structural stability with respect to the small perturba-
less than approximately 2.Qsually appear three Manakov tions but the multisoliton solution is more sensitive to the
pairs (see Fig. 9. As angle and colliding solitons ordéin perturbations and shows tendency to the splitting into the set
fact the increase of the order means the increase of the ovesf Manakov's pairs. During the collision, the energy redis-
all energy used in collisionincreases the number of pairs tribution processes lead to the considerable transformation of
that can be born upon collision increase and can reach five dhe profiles of the resulting beams with the obvious tendency
more. The variety of the energy redistribution processes oco the several stable Manakov pairs formation.
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